An Application of the Sinc-Collocation Method to a Three-Dimensional Oceanography Model

نویسنده

  • Y. Mohseniahouei
چکیده

In this paper, we explore the applicability of the SincCollocation method to a three-dimensional (3D) oceanography model. The model describes a wind-driven current with depth-dependent eddy viscosity in the complex-velocity system. In general, the Sinc-based methods excel over other traditional numerical methods due to their exponentially decaying errors, rapid convergence and handling problems in the presence of singularities in end-points. Together with these advantages, the Sinc-Collocation approach that we utilize exploits first derivative interpolation, whose integration is much less sensitive to numerical errors. We bring up several model problems to prove the accuracy, stability, and computational efficiency of the method. The approximate solutions determined by the Sinc-Collocation technique are compared to exact solutions and those obtained by the Sinc-Galerkin approach in earlier studies. Our findings indicate that the Sinc-Collocation method outperforms other Sinc-based methods in past studies. Keywords—Boundary Value Problems, Differential Equations, Sinc Numerical Methods, Wind-Driven Currents

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The application of the Sinc-Collocation approach based on derivative interpolation in numerical oceanography

In this paper, the application of a Sinc-Collocation approach based on first derivative interpolation in numerical oceanography is presented. The specific model of interest involves a hydrodynamic model of wind-driven currents in coastal regions and semi-enclosed seas with depth-dependent vertical eddy viscosity. The model is formulated in two different but equivalent systems; a complex-velocit...

متن کامل

APPLICATION OF THE SINC APPROXIMATION TO THE SOLUTION OF BRATU'S PROBLEM

In this work, we study the performance of the sinc-Collocation method for solving Bratu's problem. For different choices of step size, we consider the maximum absolute errors in the solutions at sinc grid points and tabulated in tables. The comparison of the obtained results veri ed that this method converges to the exact solution rapidly and with  

متن کامل

SOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD

Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...

متن کامل

Solution of Troesche's problem by double exponential Sinc collocation method

In this investigation, the Sinc collocation method based on double exponential transformation is developed to solve the Troesche's problem. Properties of this method are utilized to reduce the system of strongly nonlinear two point boundary value problem to same nonlinear algebraic equations. Combining double exponential transformation through Sinc collocation method causes the remarkable resul...

متن کامل

Numerical Solution of the Lane-Emden Equation Based on DE Transformation via Sinc Collocation Method

In this paper‎, ‎numerical solution of‎ ‎general Lane-Emden equation via collocation method based on‎ ‎Double Exponential DE transformation is considered‎. ‎The‎ ‎method converts equation to the nonlinear Volterra integral‎ ‎equation‎. ‎Numerical examples show the accuracy of the method.‎ ‎Also‎, ‎some remarks with respect to run-time‎, computational cost‎ ‎and implementation are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013